Kouman diminye fraksyon ak yon degre?

Kouman diminye fraksyon ak yon degre?

  • Чтобы сократить дробь со степенью нужно разбить основания степеней на такие числа, которые бы были и в знаменателе, и в числителе, и представить нашу дробь в виде новых степеней этих чисел. После этого используем свойства дробей, чтобы сократить дроби со степенью.

    свойства дробей

    Там здесь нужно запомнить, что дроби с одинаковыми степенями мы складываем при умножении и вычитаем при делении.

    На нашем примере сокращение дробей может происходить следующим образом:

    Kouman diminye fraksyon ak yon degre?

    В ответе получится 0,01.

  • Из школьного курса математики мы знаем, что сокращать дроби со степенью нужно следующим образом, вам необходимо числитель и знаменатель такой дроби разделить на одно и тоже число. В данном вами примере будет вот такое решение:

    Kouman diminye fraksyon ak yon degre?

    ---------=------------=---------=--------=-------=0,01

    16*5 (4)*5 4*5 4*25 100

  • Для того, чтобы без особых проблем сокращать дроби с степенью, прежде всего нужно хорошо знать основные формулы возведения в степень или хотябы иметь их под рукой.

    Произведение степеней с одинаковым основанием - в этом случае основание оставляем, а степени складываем

    Kouman diminye fraksyon ak yon degre?

    Деление степеней с одинаковым основанием - основание оставляем, степени вычитаем

    Kouman diminye fraksyon ak yon degre?

    Возведение степени в степень - раскрываем скобки, степени при этом умножаются

    Kouman diminye fraksyon ak yon degre?

    Произведение в степени - раскрываем скобки, при этом каждый множитель возводим в данную степень

    Kouman diminye fraksyon ak yon degre?

    Деление в степени - раскрываем скобки, при этом числитель и знаменатель возводим в данную степень

    Kouman diminye fraksyon ak yon degre?

    Дальше вспоминаем основное правило для сокращения дроби:

    чтобы сократить дробь, нужно найти наибольший общий делитель числителя и знаменателя и затем числитель и знаменатель разделить на это число.

    Теперь сокращаем дробь со степенями на примере из вашего вопроса.

    С помощью приведенных выше формул сделаем преобразования в числителе и знаменателе

    Kouman diminye fraksyon ak yon degre?

    и сейчас сократить дробь совсем несложно: ответ 0,01

    Kouman diminye fraksyon ak yon degre?

  • Прежде всего нужно четко понимать правила. Их всего 4.

    1) При перемножении разных степеней одного и того же числа, показатели степеней складываются. Например: 3^2*3^4=3^(2+4)=3^6.

    2) При делении разных степеней одного и того же числа, показатели степеней вычитаются. Например:

    5^12/5^9=5^(12-9)=5^3. 7^5/7^9=7^(5-9)=7^(-4)=1/7^4.

    3) При возведении степени в степень, показатели степеней перемножаются. Например: (2^3)^4=2^(3*4)=2^12.

    4). При извлечении корней из степеней каких-либо чисел, показатель степени делится на показатель корня. Например: (5^8)=5^(8/2)=5^4.

    Теперь конкретно решение. 4 -это 2 во второй степени. Значит 4^8=(2^2)^8=2^16. Два в степени два возведенное в восьмую степень будет два в шестнадцатой степени.

    2^16*2^2=2^18. В числителе имеем 2^18.

    В знаменателе разные степени 5 и 16. Но 16- это 2 в четвертой степени, т.е. 16=2^4. Тогда 16^5=(2^4)^5=2^(4*5)=2^20. Итак, в знаменателе имеем 5^2*2^20. И числитель и знаменатель можем сократить на 2^18. В числителе останется 2^(18-18)=2^0=1, а в знаменателе 2^(20-18)=2^2. Окончательный ответ: 1/(5^2*2^2). При желании его можно преобразовать так: 1/(5^2*2^2)=1/(25*4)=1/100. На этом можно и закончить, но при желании можно преобразовать и дальше: 1/100=1/10^2=10^0/10^2=10^(0-2)=10^(-2). Но это не обязательно.

  • Легче всего объяснить на примере.

    Допустим, нам нужно сократить вот эту дробь:

    Kouman diminye fraksyon ak yon degre?

    Прежде всего нам нужно найти такие числа, которые бы составляли числа и в числителе, и в знаменателе. В нашем примере этими числами будут 2 и 3. (2*3=6; 2*2=4).

    используя свойства дробей, мы может сделать такие преобразования:

    Kouman diminye fraksyon ak yon degre?

    Такое задание есть в экзаменационных заданиях по математике. Вот разбор одного из примеров:

  • Для того, чтобы сокращать дроби, необходимо все числа в числителе и знаменателе привести к простым числам. А дальше следовать простым формулам приведения в степень.

    1. При умножении одинаковых оснований степень складываем.
    2. При делении одинаковых оснований степень вычитаем.

    Pou egzanp,

    Kouman diminye fraksyon ak yon degre?

  • Вс окажется предельно просто, если мы обратимся к известным свойствам (особенностям) дробей со степенью.

    Kouman diminye fraksyon ak yon degre?

    Kouman diminye fraksyon ak yon degre?

    Как видим, предложенное уравнение необходимо разложить таким образом, чтобы выделить одинаковые основания, а затем в зависимости от действия складывать или вычитать соответствующие степени.

    Ниже предлагаю ознакомиться с решением указанного примера.

    Kouman diminye fraksyon ak yon degre?

  • Для того чтобы сокращать дроби со степенью, необходимо знать следующие правила:

    1) При умножении одинаковых чисел с разными степенями, степени нужно складывать;

    2) При делении одинаковых чисел с разными степенями, степени нужно вычитать;

    3) При осуществлении возведения степени в степень, показатели степеней нужно перемножать;

    4) При осуществлении извлечения корня из степени, показатель степени необходимо делить на показатель корня.

    Для вашего примера нам нужно воспользоваться первыми двумя правилами:

    4^8*2^2/5^2*16^5 = 4^9/5^2*4^10 = 1/5^2*4 = 1/100 = 0,01

  • Чтобы сокращать дроби со степенью не было для вас проблемой, необходимо знать свойства степени:

    Kouman diminye fraksyon ak yon degre?

    Теперь, чтобы закрепить знания, рассмотрим несколько примеров.

    Необходимо сократить такую дробь:

    Kouman diminye fraksyon ak yon degre?

    Основания степеней разлаживаем на кирпичики - то есть нужно подобрать такие числа, которые были бы как в числители, так и в знаменателе, после чего представляем вс в виде степеней этих самых числе. В нашем случае это 2 и 3 (2*3=6, 2^2=4). Решение будет таким:

    Kouman diminye fraksyon ak yon degre?

  • В операциях со числами в степени действуют простые правила: При умножении таких чисел степени складываются, а при делении вычитаются. Например при умножении 5^2 * 5^3 = 5^2+3 то есть 5^5. При делении 5^2: 5^3 = 5^2-3 = 5^-1. Показатели степеней складываются при умножении и вычитаются при делении в независимости от того положительная степень или отрицательная.

Ekri an lèt detache Zanmitay, PDF & Imèl
Loading ...

Add nouvo kòmantè

Ou e-mail pa pral dwe pibliye. Jaden obligatwa yo make *